WEC-Sim Code Structure iR
FEHE R
4 FHEE (imaiy@cc.saga-u.ac.jp)

Code Structure

o — N

This section provides a description of the WEC-Sim source code and its structure.

Z DTk WEC-Sim DY —2a—F & ZoiE% 3T 3

For more information about the WEC-Sim code structure, refer to the webinar on WEC-Sim Code
Structure.

WEC-Sim @ 2 — Fi&iE 0l WEC-Sim Code Structure 7 = & — % £

WEC-Sim Source Code

WEC-Sim ¥ —x2a—F

The WEC-Sim source code consists of a series of MATLAB *.m objects (defined in WEC-Sim as
classes) and Simulink *.slx library blocks which are executed by the wecSim.m script.

WEC-Sim YV —Zxa—Fit, (7 7% WEC-SIM TE#F I 7z) MATLAB *m *+ 7 =7 b &
Simulink*slx 74 77V 7wy 2 bflENs, it weeSimm X2 Y 7 P THEITINS
Executing wecSim.m parses the user input data, performs preprocessing calculations in each of the
classes, selects and initializes variant subsystems in the Simulink model, and runs the time-domain
simulations in WEC-Sim.

wecSimm (2 —HF AN 7T — X 2L, &7 7 A CHAVEEE 21T\, Simulink €7 VOHL)
BY T VAT LEFER - YIL L, WEC-SIM Oy I 2L —v 3 v R ETT 2

The WEC-Sim source code files are contained within a source directory referred to as $SOURCE.
WEC-Sim ®Y —R2a—F774Vid, Y—ZF7 4L 2} Y$SOURCE b %

File Type File name Directory
WEC-Sim Executable Script wecSim.m $SOURCE
WEC-Sim MATLAB Objects | <object>Class.m $SOURCE/objects
WEC-Sim Simulink Library <block> Lib.slx $SOURCE/lib

WEC-Sim Objects

WEC-Sim *+ 72 =7 b

All information required to run WEC-Sim simulations is contained within the simu, waves, body(i),
pto(i), constraint(i), and mooring(i) objects

(instances of the simulationClass, waveClass, bodyClass, constraintClass, ptoClass, and
mooringClass).

WEC-Sim ¥ I 2L —Y a3 VOEFTICLELRTXTOIFEMA simu, wave, body(i), pto(i),
constraint(i), mooting(i) 4 7Y = 7 PICINEI NS

(simulationClass, waveClass, bodyClass, constraintClass, ptoClass, mooringClass @ 4 v A & v)
The user can interact with these classes within the WEC-Sim input file (wecSimInputFile.m).

2 —%— T WEC-Sim A1 7 7 4)L (wecSimInputFilem) TZNHD 7 7 A EHETE 5

The remainder of this section describes the role of the WEC-Sim objects, and how to interact with
the WEC-Sim objects to define input properties.

LARE X, WEC-Sim 4 7' ¥ = 7 b OB 2L, AS) 7 a7 4 g T % 7291 WEC-Sim 4
TV P ENEET B ERHHT S

There are two ways to look at the available properties and methods within a class.

7 72 ANTHRARER 7u X7 4 LAY vy FERZICIEZDDHERD %

The first is to type doc <className> in Matlab Command Window,

and the second is to open the class definitions located in the //WEC-Sim/source/objects directory
by typing open <className> in MATLAB Command Window.

F—1% MATLAB a~>Y Fv 4 ¥ FU T doc<? 7 2A%> % AT % ik,

%1% //WEC-Sim/source/objects 74 L7 s VICH b7 T RAEREZRDITETH 5.

1

ZHEMATLAB a2~ FY 4 Y F YT open<?Z 7 A%4> # AN13 5.
The latter provides more information since it also defines the different fields in a structure.

BHEIIEENORL L 74—V FOEELIRMT 2

Simulation Class

vial—vavIIA

The simulation class file, simulationClass.m, is located in the //WEC-Sim/source/objects directory.
YIlal—vavDs 7 A7 7 AN simulationClass.m (¥ //WEC-Sim/source/objects IZ & %
The simulation class contains the simulation parameters and solver settings necessary to execute the
WEC-Sim code.

Yialb—vav 77 RE WEC-Sim 2 — FORITICLE Ry Talb—2a vy X712 N
WEEa

Within the wecSimInputFile.m, users must initialize the simulation class (simulationClass) and
specify the name of the WEC-Sim (*.slx) model file by including the following lines:

2 — % — (3 wecSimInputFilem AT I 2L —3 3 v 2 7 X (simulationClass) % ¥ #i{t L,
WEC-Sim €7 V7 7 A V(*sI)U ZIRET 2 0ERH 5. UTOTEED D
simu=simulationClass();

simu.simMechanicsFile="<WEC Model Name> .slx'

Users may specify other simulation class properties using the simu object in the wecSimInputFile.m,
such as: simulation start time (simu.startTime), end time (simu.endTime), ramp time
(simu.rampTime) and time step (simu.dt).

2 —H%—1(F, wecSimInputFilem FCsimuA 7Yz 27 F2HWEZLT, ¥ Ialb—vavrJ
ZIEEAEET S, 21y I 2L —3 a vIERE] (simu.startTime), #& 7 K (simu.endTime),
7 v 7Hift] (simu.rampTime), FffIZ 7 > 7 (simu.dt).

All simulation class properties are specified as variables within the simu object as members of the
simulationClass.
TRTCOYIalb—va VY2 72070 T 4}, simu A7V =27 PAOLEHL LT,
simulationClass ® X v N— & L TIRE I NS

The WEC-Sim code has default values defined for the simulation class properties.

WEC-Sim D a—Fif, ¥1alb—vavs 720707 4 TERINLT 740 MlxkFEo
These default values can be overwritten by the user, for example, the end time of a simulation can
be set by entering the following command: simu.endTime = <user specified end time>.
INLDT 74N Ml —FREEFETZ S, flziE, vIalb—va ol TRAEIRDa<
vFTEEEZTES

simu.endTime = <2 — F{FEK T K] >

Available simulation properties, default values, and functions can be found by typing doc
simulationClass in the MATLAB command window, or by opening the simulationClass.m file in
//WEC-Sim/source/objects directory by typing open simulationClass in MATLAB Command
Window.

FIAAREZR > a2 —va vy Tms7 4, 7740 MA, HAElZ, MATLAB 2~ Fv 4 v Y
T doc simulationClass # AJJ 3% Z & T, £7(% MATLAB =2~ ¥ N7 4 ¥ F 7T open
simulationClass % AJj L //WEC-Sim/source/objects/simulationClass.m Z % %

Refer to the following section for more information about WEC-Sim Simulation Features.
WEC-Sim & I =2 L — < = VERRED REH I3 K i 2 217

Wave Class

Wave 7 7 X

The wave class file, waveClass.m, is located in the //WEC-Sim/source/objects directory.

wave 7 7 A7 7 A)b waveClass.m |¥ //WEC-Sim/source/objects 7 4 L 7 F ViZH %

The wave class contains all wave information necessary to define the incident wave condition for
the WEC-Sim time-domain simulation.

wave 7 7 A1, WEC-Sim KffHJfEIH > I 2L — v 3 VO AR OEHERICHLERFEFRET ET
Within the wecSimInputFile.m, users must initialize the wave class (waveClass) and specify the
wave type by including the following lines:

wecSimInputFilem T, 2 —%3# 7 7 X (waveClass) Z ¥ 32 LERH Y, KD X 5 ITH
ZATRAGET B

waves = waveClass('type);

Users must specify additional wave class properties using the waves object depending on which wave
type is selected, as shown in the table below.

ERL 722 A TG T, 2—=FRBMDE 7 FAD T uT 4 XKD XS IHREST S 2 &

A more detailed description of the available wave types is given in the following sections.

A RTRE R M D X Y FEl Z2 S I3 A T D Y

Wave Type Required Properties

noWave waves.T

noWaveCIC N/A 7z L

regular waves.H, waves.T

regularCIC waves.H, waves. T

irregular waves.H, waves. T, waves.spectrumType
spectrumlmport waves.spectrumDataFile

etalmport waves.etaDataFile

Available wave class properties, default values, and functions can be found by typing doc waveClass
in the MATLAB command window, or by opening the waveClass.m file in //WEC-
Sim/source/objects directory by typing open wavenClass in Matlab Command Window.
MATRERIE 7 7 AD 7T m T 4 77 40 ME, BI$UE, MATLAB 2<> F7 4 ¥ F 7T doc
waveClass Z A1 T % L RRr&EN5. 721X MATLAB 2~ F v 4 ¥ F 7T open wavenClass
& AJ1L //WEC-Sim/source/objects/waveClass.m % .3 .

noWave

The noWave case is for running WEC-Sim simulations with no waves and constant added mass and
radiation damping coefficients.

noWave 7 — Z I ASHIEEL, {HINEES X OB BREREER D WEC-Sim & 3 2L —¥
avHTH 5.

The noWave case is typically used to run decay tests.

noWave 7 — &%, —#&iic 3 B (decay) 7 2 I & %

Users must still provide hydro coefficients from a BEM solve before executing WEC-Sim and specify
the period (wave.T) from which the hydrodynamic coefficients are selected.

2 —#— (% WEC-Sim ZEFT9 2 §i1c BEM ¥ AN IC X 2 Filkaa T 2 082 H 5.

F 7z, BN L AR R D A (wave T) Z 8 E 3§ 2 W E A H 5

The noWave case is defined by including the following in the input file:

noWave 7 — R I AN 7 7 A VMICRITREET 2

waves = waveClass('noWave');

waves. T = <user specified wave period>;

noWaveCIC

The noWaveCIC case is the same as the noWave case described above, but with the addition of the
convolution integral calculation.

noWaveCIC 7 — & (%, LiC noWave &R U TH 523, BEAALEMHEEZ B L 72

The only differences is that the radiation forces are calculated using the convolution integral and
the infinite frequency added mass.

M—DE WX, 77 4 T —¥ a v IRERIABES & BRE BB INE R/ cEtR I N5

The noWaveCIC case is defined by including the following in the input file:

noWaveCIC 2 AT) 7 7 A MICRITRIEFRT 5

waves = waveClass('"noWaveCIC'):

regular

The regular wave case is for running simulations with regular waves and constant added mass and
radiation damping coefficients.

regular wave 7 — R %, BAIASHK & —EDFINE & B L ORISR w52 121 —
vavHTH S

Using this option, WEC-Sim assumes that the system dynamic response is in sinusoidal steady-state
form, where constant added mass and damping coefficients are used (instead of the convolution
integral) to calculate wave radiation forces.

DA 7 a v T, WEC-Sim 13 27 LDBWIGE D IEREFIRETH 5 2 L 2HfEL 35, 7
T4 T —va v JOFEORD, (BEHABESDNRD Y IC)—EDMINE & & MR EH S
%

Wave period (wave.T) and wave height (wave.H) must be specified in the input file.

B (wave. T) & Jm (wave H) 2 A7 7 A L TIRET 2 2 &

The regular case is defined by including the following in the input file:

regular case (. AN 7 7 A VMICRITHZEERT S

waves = waveClass('regular');

waves. T = <user specified wave period>;

regularCIC

The regularCIC is the same as regular wave case described above, but with the addition of the
convolution integral calculation.

regularCIC |3 [5C wave 77— R L [FIfR722%, B HRIABEHE ZEM L 7=

The only difference is that the radiation forces are calculated using the convolution integral and the
infinite frequency added mass.

ME—DEWIE, 77 4 T—3 a YARPBERALRG) & IRE BB MEE 2w CitR I
ETHB

Wave period (wave.T) and wave height (wave.H) must be specified in the input file.

AT17 7 4 MBI (wave. T) & S (wave H) {5 E$ 5 Z &

The regularCIC case is defined by including the following in the input file:

regularCIC case |, AJJ7 7 A VICRITRERT D

waves = waveClass('regularCIC');

waves. T = <user specified wave period>;

waves.H = <user specified wave height>;

irregular

The irregular wave case is the wave type for irregular wave simulations using a Pierson Moskowitz
(PM), Bretschneider (BS), or JONSWAP (JS) wave spectrum.

irregular wave case &, AHHEY I 2L —Y 3 v D wave type TH D, TV V-FERAY 4 ¥
Y (PM), 7L Fva2F A4 X—(BS), JONSWAP(JS)IHA =7 bV ZHHTE %

Significant wave height (wave.H), peak period (wave.T), and wave spectrum type
(waves.spectrumtype) must be specified in the input file.

AN 774 rCcEHHRENE waveH) ., v — 7 & H (waveT) ., JEARZ PV &2 4 7
(waves.spectrumtype) % f5E€ 3 5

The available wave spectra and their corresponding waves.spectrumType are listed below:

M ATREZR I A = 7 b v & Z AUCHIGd % waves.spectrumType (ZLA T D@ b

Wave Spectrum , spectrumType

Pierson Moskowitz , PM

Bretschneider , BS

JONSWAP, JS

The irregular case is defined by including the following in the input file:

4

irregular case 1. AJ17 7 A VNICRITRERKT 5

waves = waveClass('irregular');

waves. T = <user specified wave period>;

waves.H = <user specified wave height>;

waves.spectrumType = '<user specified spectrum>';

Users have the option of defining gamma for the JONSWAP spectrum by specifying waves.gamma
= <user specified gamma>;.

A7 a v gamma 23 JONSWAP 2~<72 F L2 HET 5

waves.gamma = <user specified gamma> THEE 3T 5

If gamma is not defined, the default value of gamma equal to 3 is used.

gamma DEFINTWARWEE, 7740 ME3I BRI NS

Refer to the following section for more information about WEC-Sim's irregular Wave Features.
WEC-Sim @ irregular Wave OFEflIZXEiZ#SHT 5 &

spectrumImport

The spectrumImport case is the wave type for irregular wave simulations using an imported wave
spectrum (ex: from buoy data).

spectrumImport case ZAMANE DY I 2L —2 2 v D wave case TH 5. 747 —X2FHDWPKA
_7 P EGRHPAD

The user-defined wave spectrum must be defined with the wave frequency (Hz) in the first row and
the spectral energy density (m”2/Hz) in the second row.

I—PFERDPE A7 bz, 1 {TIC wave frequency (Hz), 2 fTHIC spectral energy density
(m"2/Hz) % 5ik 3 5.

An example of this is given in the ndbcBuoyData.txt file in the tutorials directory folder of the WEC-
Sim source code.

WEC-Sim @Y —Z2a2—=FDFa2—+FVTALT 4L 7 I D ndbcBuoyData.txt 7 7 4 M]3
G g

This format can be copied directly from NDBC buoy data.

ZoRIENDBC 74 7 — 2 2 bEfEa v —T% 3%

For more information on NDBC buoy data measurement descriptions, refer to the NDBC website.
NDBC 7' 4 ©i#fllid NDBC @ Web %4 + % £

The spectrumImport case is defined by including the following in the input file:

spectrumImport case [ZAN 7 7 A VICRITREET 5

waves = waveClass('spectrumImport’);

waves.spectrumDataFile="<wave spectrum file>.txt';

etalmport

The etalmport case is the wave type for wave simulations using user-defined time-series (ex: from
experiments) .

etalmport case 1%, EhiZ L2 —FERRRVZHA VY a2 -2y Th 2

The etalmport case is defined by including the following in the input file:

etalmport 7 —RAlx, AJJ7 7 A VICRAITZRERT B

waves = WaveCIass('etaImport');

waves.etaDataFile ='<eta file>.txt';

Refer to the following section for more information about WEC-Sim Wave Features.

WEC-Sim Wave B30 ifilll I X2 28425 2 &

Body Class

Body 7 7 X

The body class file, bodyClass.m, is located in the //WEC-Sim/source/objects directory.

Body 7 7 27 7 4 v bodyClass.m & //WEC-Sim/source/objects IC % %

The body class contains the mass and hydrodynamic properties of each body that comprises the

5

WEC being simulated.

Body 7 7R3> 12—+ a s WEC EUA0EE & AEIFEEZ &

Within the wecSimInputFile.m, users must initialize each iteration of the body class (bodyClass),
and specify the location of the hydrodynamic data file (*.h5) and geometry file (*.stl) for each body.
wecSimInputFilem NT, &&XEICH 1T % Body 7 7 A (bodyClass) # ¥t L. &Mk DK
T—=277ANFhE) EBIRT 7 A V(X STL) DG 2 15E 3 5

The body class is defined by including the following lines in the WEC-Sim input file, where # is the
body number ‘<bem_data>.h5' is the name of the h5 file containing the BEM results:

body 7 7 2% WEC-Sim AN 7 7 A VICRITZRB L CTERI NS, # IWEET,
<bem_data>.h5 i BEM#EEDOHS 774 L TH B

body(<#>)=bodyClass('<bem_data>.h5")

body(<#>).geometryFile = '<geom>.stl’;

Users may specify other body class properties using the body object for each body in the
wecSimInputFile.m.

2 —%#1% wecSimInputFilem THEYHAH D Body 7> = 7 b %\, fthd Body 7 7 2D 7’1
N7 4 RASET B

WEC-Sim assumes that every WEC is composed of rigid bodies exposed to wave forcing.
WEC-Sim (X, WEC I 2% 2k TN s 2 L it 35

Body class properties include mass (body(#).mass) and moment of inertia (body (#).momOfInertia).
Body 7 7 2D 7w %7 4 |38 & (body(#).mass) & EM:E— 2 b (body(#).momOflnertia) % &
&

For example, viscous drag can be specified by entering the viscous drag coefficient and the
characteristic area in vector format the WEC-Sim input file as follows:

P20, KEPEDTIE, RRIEEHUREL. e 2 ~ 7 » A IEC WEC-Sim AJ) 7 7 4 A icitid
R

body(<#>).viscDrag.cd=[001.300 0]

body(<#>).viscDrag.characteristicArea= [0 0 100 0 0 0]

Available body properties, default values, and functions can be found by typing doc bodyClass in
the MATLAB command window, or opening the bodyClass.m file in //WEC-Sim/source/objects
directory by typing open bodyClass in Matlab Command Window.

MR ek 7w X7 40 77 4 v ME, HEEEIR. MATLAB 2= F 7 4 ¥ F 7 T doc
bodyClass # A /1. & %\ iZ MATLAB 2a<=¥ F 7 4 ¥ F 7 C open bodyClass % A7 L
//WEC-Sim/source/objects/bodyClass.m & % .

Refer to the following section for more information about WEC-Sim Body Features.

WEC-Sim Body #fE D2, KETZ2ZSMT 5 &

Constraint Class

Constraint 7 7 &

The constraint class file, constraintClass.m, is located in the //WEC-Sim/source/objects directory.

Constraint 7 7 27 7 4)L constraintClass.m ¥ //WEC-Sim/source/objects 125 %

WEC-Sim constraint blocks connect WEC bodies to on one another (and possibly to the seabed) by

constraining DOFs.

WEC-Sim ##) 7w » 7 13, DOFGEE)H L) ZHli35 % < & i< X > T, WEC AfRRL 2
BEIC X > TIRHEE C) % d 2

The properties of the constraint class (constraintClass) are defined in the constraint object.

5 7 5 A (constraintClass) DX EfE 1L constraint 72 = 7 FICERI NS

Within the wecSimInputFile.m, users must initialize each iteration the constraint class

(constraintClass) and specify the constraint name, by including the following lines:

wecSimInputFile.m N, = — %35 7 7 X (constraintClass) % & K E CHIHANL T 2 EEHH D |

RIRTITCHERAL ZIRES 5

constraint(<#>)=constraintClass('<constraint name>'):

For rotational constraint (ex: pitch), the user also needs to specify the location of the rotational joint

6

with respect to the global reference frame in the constraint(<#>).loc variable.

BEEHEIR) (B &y F) oFhH, 2—F—F 7o - AZl|7 L —Lic LCThiEY a4 Y b o
f\7i& % constraint(<#>).loc ZE CTIRET 2L E L H 5.

Available constraint properties, default values, and functions can be found by typing doc
constraintClass in the MATLAB command window, or opening the constraintClass.m file in
//WEC-Sim/source/objects directory by typing open constraintClass in MATLAB Command
Window.

EAATRE R IR 7w o¥ T 4 | 77 v M, X OBREIL. MATLAB 2~ Y Fv 4 ¥ FUTF ¥
2 AV + @ constraintClass # AJJ. ¥ 72 13//WEC-Sim/source/objects/constraintClass.m &% 5.
Refer to the following section for more information about WEC-Sim Constraint Features.
WEC-Sim O OBEREDFEM IR 2 ST % 2 &

PTO Class

PTO 7 7 &

The pto class file, ptoClass.m, is located in the //WEC-Sim/source/objects directory.

PTO 7 2 27 7 4 v ptoClass.m (¥ //WEC-Sim/source/objects IZ& 5.

WEC-Sim Power Take-Off (PTO) blocks connect WEC bodies to one other (and possibly to the

seabed) by constraining DOFs and applying linear damping and stiffness.

WEC-Sim »¥7 —7 4 747 (PTO) 7w v 713 DOF 2 HIfR L., ML X~ v v 7 L RitE%#H L

WEC A7 4 2o R 7 4 (GHIC L - TIIIHK) Tk s 5.

The pto class (ptoClass) extracts power from relative body motion with respect to a fixed reference

frame or another body.

PTO 7 7 Z(ptoClass) (%, [EE & n7=3HE7 L — A F 72 13 fth o Wik it 3 2 VA HES) 2 & B

T LY H T

The properties of the PTO class (ptoClass) are defined in the pto object.

PTO 7 7 Z(ptoClass) DFEIZ PTO A 7 = 7 PITER I NS

Within the wecSimInputFile.m, users must initialize each iteration the pto class (ptoClass) and

specify the pto name, by including the following lines:

wecSimInputFilem WT, 2 —¥%#(X PTO 7 7 X (ptoClass) &K IE 2 WAL 32 03 H H | KAT

DX 51CPTO 4 %IEET S

pto(<#>) = ptoClass('<pto name>");

For rotational ptos, the user also needs to specify the location of the rotational joint with respect to

the global reference frame in the constraint(<#>).loc variable.

[0]#5 pto DA, T —F 1 constraint(<#>).loc BT/ v — NV EHE T L — 2001 2 [HlERY 2

AV FONEZIGES 2LEDH 5.

In the PTO class, users can also specify linear damping (pto(<#>).c) and stiffness (pto(<#>).k)

values to represent the PTO system (both have a default value of 0).

PTO 7 7 2 TlE, PTO ¥ A7 L &RIHIVIHE (pro(<#>).c) L [l (pro(<#>) k) #f5ETE 5
(M7edT 740 MARER),

Users can overwrite the default values in the input file.

I—F—FIANTTANHNDT 7+ L Mk EHEETES

For example, users can specify a damping value by entering the following in the WEC-Sim input

file:

il Z1¥ WEC-Sim ® AN 7 7 A MITBA T AT LTIl A 558 5 %

pto(<#>).c = <pto damping value>;

pto(<#>).k = <pto stiffness value>;

Available pto properties, default values, and functions can be found by typing doc ptoClass in the

MATLAB command window, or opening the ptoClass.m file in //WEC-Sim/source/objects

directory by typing open ptoClass in MATLAB Command Window.

AP EEZ pto 7w ¥T 4 . T 7 4V ME, B X OBIEIZ. MATLAB 2~ ¥ Fv 4 v F v T doc

ptoClass & AJ13 %%, MATLAB 2=~ Fv 4 ¥ F v T open ptoClass & AJ1L T //WEC-

Sim/source/objects/ptoClass.m 12 & %

Refer to the following section for more information about WEC-Sim PTO Features.

WEC-Sim ® PTO #EDFEM IZ R i 2 S5 5 2 &

Mooring Class

R¥E 7 7 A

The mooring class file, mooringClass.m", is located in the //WEC-Sim/source/objects directory.
%% 7 7 A mooringClass.m (X //WEC-Sim/source/objects 1ZH %,

The properties of the mooring class (mooringClass) are defined in the mooring object.

%8 7 7 2 (mooringClass) O 7 v X7 4 IMFEA TV 27 P TERIND,

Within the wecSimInputFile.m, users must initialize the mooring class and specify the mooring
name, by including the following lines:

mooring(#)= mooringClass('name");

wecSimInputFilem AT, XATD X 5 IR Z WL L THREL ZIEET 201 H 5.

The mooring class (mooringClass) allows for different fidelity simulation of mooring systems.

%% 7 7 A (mooringClass) 1%, fRE L AT L DRRZBEEY 2L —v a3 VEARRICT S,
Available mooring properties, default values, and functions can be found by typing doc
mooringClass in the MATLAB command window, or opening the mooringClass.m file in //WEC-
Sim/source/objects directory by typing open mooringClass in MATLAB Command Window.
ERAPRERIRE 7 a8 T 4 . 7T 7 4 v MA, B X OB#IE. MATLAB 2~ ¥ Fv 4 v F 7 T doc
mooringClass & AJ13%. & %\ //WEC-Sim/source/objects/mooringClass.m % H.%.

Refer to the following section for more information about WEC-Sim Mooring Features.

WEC-Sim D RHEEEEDFEM IZRE 2 ST 5 2 &

Response Class

INE 7 7 A

The response class is not initialized by the user.

JGE 2 A F 2 —F—HIHE T & v

Instead, it is created at the end of a WEC-Sim simulation.

ZoffbH WEC-Sim & I 2L —v a VTR I 1L 5

It contains all the output time-series and methods to plot and interact with the results.
hid, INCOHNDORRINBE LAY v FE2ET

The available parameters are explained in the Output Structure section.

fEF A HE 7R ¥ 7 A2 2 13 JIHE& (Output Structure) D i CitlHE 1 5

WEC-Sim Library

WEC-Sim 74 777V

In addition to the wecSimInputFile.m, a WEC-Sim simulation requires a simulink model (*.slx) that
represents the WEC system components and connectivities.

wecSimInputFilem Il 2 T, WEC-Sim ¥ I 2L —v za vicid, WEC v A7 LD avK—x v
b &R T Simulink 7 (* slx) BDMETH B

Similar to how the input file uses the WEC-Sim classes, the Simulink model uses WEC-Sim library
blocks.

AN 7 7 4028 WEC-Sim 27 7 2 %{# 3 % L [AfkIC, Simulink €5 413 WEC-Sim 74 7°F
Vo7 ay 7 xfHT 5

There should be a one-to-one between the objects defined in the input file and the blocks used in
the Simulink model.

A7 7ANTEEINZA 7Y 227 P e Simulink EFATCHERAINE 7oy 731 51 %t
JEDVEDRD B

The WEC-Sim library is divided into 5 different types of library blocks.

WEC-Sm D F A 77 VIE520D57 477) 7ay 7ichhrnsd

The user should be able to model their WEC device using the available WEC-Sim blocks (and
possibly other Simulink/Simscape blocks).

fEF [HE7Zs WEC-Sim 7' v v 7 (5G&HIC X > Tidfthd Simulink/Simscape 7' v v 7) Z#H L <
WEC 7354 2% 27 LT 3

The image below shows the WEC-Sim block grouping by type.

Tomliz, 24 7o WEC-Sim 7a v 7O 7 v— 7%k RT

This section describes the five different library types and their general purpose.

ZOHiE5 oDREB 7477 Y ML X0 a HINZ BT 5

The Body Elements library contains the Rigid Body block used to simulate the different bodies.
Body Elements 74 777 Vicid, 3 EIEuWEDOL Iav— PRI IMIET 0 Y 7558
ind

The Frames library contains the Global Reference Frame block necessary for every simulation.
Frames 74 77 Vi, I RCOY I al—va VIS EL 7o — "LV E#ET L —LT oy 7 %285
&

The Constraints library contains blocks that are used to constrain the DOF of the bodies without
including any additional forcing or resistance.

Constraints 7 4 77 V&, Btz &£ FIcH 7 4 © DOF ZHllR$ 2 7wy 7 % &
5

The PTOs library contains blocks used to both simulate a PTO system and restrict the body motion.
PTO 747701k, PTO Y AT L%y Ialb—tb L, 2oUKEHZHIRT 2 7wy 7 28T
Both constraints and PTOs can be used to restrict the relative motion between multi-body systems.
fil#) & PTO Dlifj 2 L <, EEWRRE N ES) 2 fR T & 2

The Mooring library contains blocks used to simulate mooring systems.

Mooring 74 77 VIdfFH T AT L%y IaLb— 3570y 72 &

Body Elements

LS S

The Body Elements library shown below contains one block: the Rigid Body block.
DLMICRT AT 4 Elements 74 77 Vid—>2d 7 1 v 7 (Rigid Body) % & 5.

It is used to represent rigid bodies.

NIk E RS 220 icflEns

At least one instance of this block is required in each model.

BETNICIE, 2070y 70Bld 1204 VARV ARRETH

The Rigid Body block is used to represent a rigid body in the simulation.

Mitk7ay 713, ¥Iav—vavclithzRTzoicilEns

The user has to name the blocks body(i) (where i=1,2,...).

T—F—lF7 vy IR EMT BHERH L. body () (=1,2,..)

The mass properties, hydrodynamic data, geometry file, mooring, and other properties are then
specified in the input file.

HET o 74, WHENET -2, YAALV 7740, RE, 2007w T 4 ZAN 7 7
ANTIRESIND

Within the body block, the wave radiation, wave excitation, hydrostatic restoring, viscous damping,
and mooring forces are calculated.

Body 7wy 7Tk, 77 4 =— = v, B, FokEEE, KRR, REN235E S
ns

Frames

7L —L

The Frames library contains one block that is necessary in every model.

ZL—L7A4AT77VICiF, TRTCODETATRELRT Ry 7R 1 OEENS

The Global Reference Frame block defines the global coordinates, solver configuration, seabed and
free surface description, simulation time, and other global settings.

ru—NVHEEET L — LT w203, Za —oOVEEE YV VSRR B Ss X O H iR D Edid,

9

vIial—vavi, Z2oftio e —SABEREERT D

It can be useful to think of the Global Reference Frame as being the seabed when creating a model.
ETNANEFRT L LEIC, /=AU T7 L — L2 HEEEXL L ITAERTHD

Every model requires one instance of the Global Reference Frame block.

TRTCDETAT, FB—N"ABBIL—LT 0y 7DA VARV AR 1 DOHETH S

The Global Reference Frame block uses the simulation class variable simu and the wave class
variable waves, which must be defined in the input file.

sa—"UEH¥ET L — A7 1y 73, simulation 7 7 AZE simu & wave 7 T AEE wave %
HHT 2, TNORAN 7 7AVTERT LZHLELRD S

Constraints

PR

The blocks within the Constraints library are used to define the DOF of a specific body.
Constraints 74 77 Vo7 vy 7 \3YkoEEIAHE 2 EFRT 5

Constraints blocks define only the DOF, but do not otherwise apply any forcing or resistance to the
body motion.

Constraints 7' 1 v 7% DOF 7210 2 E# L, YHGEENICHRFIRIC S LEPT2 8 L 22w

Each Constraint block has two connections: a base (B) and a follower (F).

Constraint 7' 1 v 7 (% Base(B) & follower(F)® 2 DD fhi % b

The Constraints block restricts the motion of the block that is connected to the follower relative to
the block that is connected to the base.

Constraints 78 v 73, 74+ uTICERINTHWE 7Ty 7OEZ %2, XR—RICEHRINTHD
7wy 70 LTI ICHIER 3 2

For a single body system, the base would be the Global Reference Frame and the follower is a Rigid
Body.

H—DURROHE, R—RE /R =B\ 7L —L1lk), 7407 —FY Yy FRT4IC
%%

A brief description of each constraint block is given below.

Constraint 71 v 7 OfHE AL LT IC/RNT

More information can also be found by double clicking on the library block and viewing the Block
Parameters box.

FATIZV Ty s EZXTAI)y L, [Tay I X7 XA=2]KRy 7 ZA%R KT D &FEMIER
BFRNIND

Constraint Library
Constraint 74 77V

Block DOFs | Description

Fixed 0 Rigid connection. Constrains all motion between the base and follower
R 7, R— AL 7407 —DHDTXTOE) X 2R

Translational | 1 Constrains the motion of the follower relative to the base to be

translation along the constraint's Z-axis X — RICKF 2 7 + 1 7 D
NEB) % Z Bl 5 @B D HICHIR S %

Rotational 1 Constrains the motion of the follower relative to the base to be rotation
about the constraint's Y-axis _— R IZX{$ 2% 7+ 107 —DE % % Yifil
HLL R D HICHIR S 5

Floating 3 Constrains the motion of the follower relative to the base to planar
(3DOF) motion with translation along the constraint's X- and Z- and rotation
about the Y- axis X—XCKF % 7 4 v 7 —OEH) % X fili,Z §{lj i<
O ATEE) & Y Bl)E D DRI HIR S %

Floating 6 Allows for unconstrained motion of the follower relative to the base ~
(6DOF) — RIS 5 7 4+ v 7 OEB) R L

10

PTOs

PTO

The PTOs library is used to simulate linear PTO systems and to restrict relative motion between
multiple bodies or between one body and the seabed.

PTO 74 77 V3 PTO v A7 2% ¥ I aL—F L, EHOMEME 7213 1 Ytk & KO
S % HIR S5

The PTO blocks can simulate simple PTO systems by applying a linear stiffness and damping to
the connection.

PTO 7w v 7 i3ffifi7 PTO v AT 4% I 2L — T 5. FERICHIERIM . £ v vy 7%
ERRA)

Similar to the Constraints blocks, the PTO blocks have a base (B) and a follower (F).

Constraints 7 2 v 7 LA, PTO 7uvy 7 ii_—zxB)e 7+u7F)%dH o

Users must name each PTO block pto(i) (where i=1,2,...) and then define their properties in the
input file.

2—HF% PTO 7uvy 7 ic4uiz g PTOG)(=1,2,...), AJI7 7 A NVHATT a7 4 2ERHR
3 5.

The Translational PTO and Rotational PTO are identical to the Translational and Rotational
constraints, but they allow for the application of linear damping and stiffness forces.

i PTO & [Bl#E PTO (%, Wi 3 X ORI R & [F U 7228, #PIEE & Witk 2@ c & 2
Additionally, there are two other variations of the Translational and Rotational PTOs.

F 72, Wi PTO & [aldE PTO ICIZ =2 DoY) T — 3 VRFET S

The Actuation Force/Torque PTOs allow the user to define the PTO force/torque at each time-
step and provide the position, velocity and acceleration of the PTO at each time-step.

Actuation Force/Torque PTOs 13, &K A 7 v 715 WTPTO J1/ b v 27 BEFRTE, &K
AT v 7T, PTO OfE, SR ONEEZ 3 5.

The user can use the response information to calculate the PTO force/torque.

2—FIEPTO Nj/ b v 7 %3t R 2 I0EEREHH T 2

The Actuation Motion PTOs allow the user to define the motion of the PTO.

Actuation Motion PTOs (3= —4—23 PTO O#E| Z{5E T 5

These can be useful to simulate forced-oscillation tests.

o EHEREIEY 2L —ICAHTH S

Note

R

When using the Actuation Force/Torque PTO or Actuation Motion PTO blocks, the loads and
displacements are specified in the local (not global) coordinate system.

Actuation Force/Torque PTO #7213 Actuation Motion PTO 7w v 7 i3 256, flE &
ZALZRATHE R CTIRE I N D

This is true for both the sensed (measured) and actuated (commanded) loads and displacements.

T, B E N2 GHE) & AFBY(FE) &g & LD /7 TIEL W

Mooring

R

The mooring library is used to simulate mooring systems.

mooring 74 77 VIIEH AT L% 2L — T 5

The MooringMatrix block applies linear damping and stiffness based on the motion of the follower
relative to the base.

MooringMatrix 7' &2 v 7%, RX—XINF 25 7 4+ 1 7 OHNGEENICITE-O VT FRIZRE K CHIE
ZWEMT 5

The MoorDyn block uses the compiled MoorDyn executables and a MoorDyn input file to simulate
a realistic mooring system.

11

MoorDyn 7 & v 7 (&3 v X4 %D MoorDyn 477 7 4 v & MoorDyn A1 7 7 A V& fEH L
THENRBRE AT 2%y IaLb—1+T 3%

There can only be one MoorDyn block per Simulink model.

Simulink €7 L C 1 2® MoorDyn 71 v 7 DAfEHTE %

There are no restrictions on the number of MooringMatrix blocks.

MooringMatrix 7" v v 7 [3EUCHIFR 23w

Simulink/Simscape Blocks

Simulink/Simscape 7' =1 v 7

In some situations, users want to use Simulink/Simscape blocks that are not included in the WEC-
Sim Library to build their WEC model.

WEC-Sim 7 4 77 V& 7\ Simulink/Simscape 7' 1 v 7 Zffif] L ¢ WEC £ 7 v % {§EE
TZ5%

Output Structure

H e

After WEC-Sim is done running, there will be a new variable called output in your Matlab workspace.
WEC-Sim %Ef71%. MATLAB 7 — 27 X = — ZIZH L WA output 234K I 5.

The output variable is an instance of the responseClass class.

output Z#{ 13 responseClass 7 7 AD A VARV A TH 5

It contains all the relevant time-series results of the simulation.
Yial—vavodrToRRIFRZ &

The structure of the output variable is shown in the table below.

MR DG % LU ORISR

Time series are given as [(# of time-steps) x 6] arrays, where 6 is the degrees of freedom.

RE2 5L [(# of time-steps) x 6] TH-x b5, 6 ILEBIOHMBETH 5.

In addition to these time-series, the output for each object contains the object's name or type and
the time vector.

INHIRERINCIIZ, &4 7Y =7 PO hiE, A7V =27 F OFFECHEE, KE~x2 vz &
5

In addition to the responseClass output variable, the outputs can be written to ASCII files by using
simu.outputtxt = 1; in the input file.

responseClass I EFICIN A, AJ17 7 4 MiT simu.outputtxt=1 %5tk % &, HJ128 ASCII
7rANCEEAIND

output

i

| wave | elevation | array: (# of time-steps)x1

bodies(i) position array: (# of time-steps) x 6

velocity array: (# of time-steps) x 6
acceleration array: (# of time-steps) x 6
forceTotal array: (# of time-steps) x 6
forceExcitation array: (# of time-steps) x 6
forceRadiationDamping array: (# of time-steps) x 6
forceAddedMass array: (# of time-steps) x 6
forceRestoring array: (# of time-steps) x 6
forceMorrisonAndViscous array: (# of time-steps) x 6
forceLinearDamping array: (# of time-steps) x 6
cellPressures_time array: (# nlHydro time-steps) x (# cells)
cellPressures_hydrostatic array: (# nlHydro time-steps) x (# cells)
cellPressures_waveLinear array: (# nlHydro time-steps) x (# cells)

12

cellPressures_waveNonLinear

array: (# nlHydro time-steps) x (# cells)

ptos(i) position array: (# of time-steps) x 6
velocity array: (# of time-steps) x 6
acceleration array: (# of time-steps) x 6
forceTotal array: (# of time-steps) x 6
forceActuation array: (# of time-steps) x 6
forceConstraint array: (# of time-steps) x 6
forcelnternalMechanics array: (# of time-steps) x 6
powerlnternalMechanics array: (# of time-steps) x 6
constraints(i) | position array: (# of time-steps) x 6
velocity array: (# of time-steps) x 6
acceleration array: (# of time-steps) x 6
forceConstraint array: (# of time-steps) x 6
mooring(i) position array: (# of time-steps) X6
velocity array: (# of time-steps) x 6
forceMooring array: (# of time-steps) x 6
moorDyn Lines struct: outputs in the Line#.out file
Line# (for each line) struct: outputs in the Line#.out file

ptosim , See PTO-Sim section for details ,

Functions & External Codes

BI%k & S = — &

While the bulk of the WEC-Sim code consists of the WEC-Sim classes and the WEC-Sim library,

the source code also includes supporting functions and external codes.

WEC-Sim ® K#f5r 1 WEC-Sim @ 7 7 2 & WEC-Sim ® 7 4 77 U TR I LT 5203, V — A
a— FEFF—- FPEBA N 2 -V 2a T

These include third party Matlab functions to read *.h5 and *.stl files, WEC-Sim Matlab functions
to write *.h5 files and run WEC-Sim in batch mode, MoorDyn compiled executables, python macros

for ParaView visualization, and the PTO-Sim class and library.

*h5 & *stl AT+ — Fox—F 4 O Matlab B%.*.h5 7 7 f L 2 E X AL T WEC-Sim %
Ny FE— FTHITT S5 WEC-Sim Matlab B%{, MoorDyn 22 v XA WFERFEIT7 7 4 v,

ParaView AJ#R{LF @ Python 7 v, PTO-Sim 7 7 A& 5477V Th 5
Additionally, BEMIO can be used to create the hydrodynamic *.h5 file required by WEC-Sim.
X b2, BEMIO Z{EH L <, WEC-Sim ICHE LA *hs 7 7 4 VE2ERT 5
MoorDyn is an open source code that must be downloaded separately.

MoorDyn i34 —7 vV —ZRa—FThH YV, &KX v vyua—FT 3080355
Users may obtain, modify, and recompile the code as well as desired.

2—F—F, a—F2REL, ZEL, Ha v SfALTE 3,

[END OF FILE]

13

