%[j“

MoorDyn User's Guide

Matthew Hall, Department of Mechanical Engineering, University of Maine
matthew.hall@umit.maine.edu
December 15, 2015

1. Introduction and Acknowledgements

1. W5 & HEE

This document is a guide to using MoorDyn, an open-source lumped-mass mooring line model.
COXEEFA—-T vy —2REPEEHRHE T 4 TV MoorDyn D4 FTH 5%,

MoorDyn was designed with the mindset of using only the features that are necessary for predicting
the dynamics of typical mooring systems and probably isn't suited for modeling cables with
appreciable bending and torsional stiffnesses.

MoorDyn &, #BI (%8 & R 7 L OEB) FHNC A E R BERED AEH T 55 2 /7 CRkalh S L7z,
T=7NDha Y RECHTLAL VEIEDOET Y v ZITiFEL T,

It can be used as a stand-alone mooring simulator

if fairlead motions are prescribed from a separate data file, or it can be coupled with floating platform
models for coupled simulation of a moored floating structure.

7xT7V—F (CBERE) OEHVHNOT—X7 7 ANVTHEI NI, AZX Y FT Ry OREY
Jalb—2 e LTHEMTE S, 23, REFERRNEOEM Y Iab—va vk, #E7 7
Yy P77 A —LETNERETE 2D,

Two versions exist: one generic and one part of FAST v81.

200X =Y a3 VHBFIET b, —ftt FAST V81 o—if,

MoorDyn supports arbitrary line interconnections, clump weights and floats, and different line
properties.

MoorDyn i3, fFED 7 4 v OMAEHE, 7 7 v 7OEBCTHE, B b 74 vibkz K-+ F
%o

The model accounts for internal axial stiffness and damping forces, weight and buoyancy forces,

hydrodynamic forces from Morison's equation, and vertical spring-damper forces from contact with
the seabed.

ETOVIE, NEREIIEITE & D). B .) Y VR, R X B HEET 1A 1 AR
"N %2EET 5.

The formulation supports inclusion of wave kinematics in the hydrodynamic force calculations, but
that functionality is currently disabled in the absence of a standardized method for receiving wave
kinematics data in coupled simulations.

AT EHREICEES 2 A cER(L T ¥ 225, Z OMEEIX. WAL Tw 3,

BUEREK Y 2 2 L — a v CEGER) 7 — X 2%\ 2 IR FE L e\ T2 0,

In the FAST v8 version, hydrodynamic loads will eventually be handled externally by coupling with

HydroDyn
FAST V8 T, #itfAfifdEId HydroDyn & K & 240 AL 3 2
(in the current version, hydrodynamic forces are calculated assuming still water).

(BHE. WARITFOK L OE L CEHR I 2),
The model is still being improved, and I hope other users will contribute to it as they adapt it to their
specific needs.
COETAMFERUERLTHY, o2 —F—HEIC X Vo ORE=—XiclAa I+ 5T L
ZHE D,
MoorDyn began as a course project in Spring 2014 and emerged as a working mooring model in Fall
2014.
MoorDyn (¥ 2014 FHEICa—Z2D 727 b LTHT Y, 2014 FRICEEETLE LTE
%7,
Marco Masciola (ABS) provided advice at many stages of the development process.
w3 -wvA T (ABS) 3, BT Ht2D% { OB TIIE 212 L 72,
I then validation MoorDyn against 1:50-scale floating wind turbine test data under the advising of
Andrew Goupee (UMaine) [1].
Andrew Goupee (UMaine) OBIE DT, 1:50 27 — VEEHEE T — % T MoorDyn Z#RGLE L 7=
[1],
I created a separate FORTRAN implementation of MoorDyn for inclusion in FAST v8, with input
from Bonnie Jonkman and Jason Jonkman (NREL).
FAST V8 Ic&® % 72 % MoorDyn @il FORTRAN 2% % {E{ L 7z, Bonnie Jonkman and Jason
Jonkman (NREL) D 7 — % Z{EH L 7=,
[also collaborated with Giacomo Vissio (Politecnico di Torino) to couple MoorDyn to
Matlab/Simulink-based wave energy converter models.
MATLAB/Simulink ~ — Z T 4 v F—Z £ 7L & MoorDyn DA IC Giacomo Vissio
(Politecnico di Torino) & 71 L 7=
This was supported by an INORE International Collaboration Incentive Scholarship2.
Z 1% INORE International Collaboration Incentive Scholarship2 I X o> TH K — F Iz,
Most recently, I helped Senu Sirnivas and Yi-Hsiang Yu in creating a coupling between MoorDyn
and WEC-Sim3.
I MoorDyn & WEC-SIM D& % E 3 % BRIC Senu Sirnivas and Yi-Hsiang Yu % BijiJ 72,
The MoorDyn User's Guide benefited heavily from the reviewing of Jason Jonkman.
MoorDyn = —#—X %' 4 Fii Jason Jonkman ® L & = —» 5% { OFIE %157,
My PhD studies are supported by the Natural Sciences and Engineering Research Council of Canada.
FL D EA-FHFE OWFFEIE Natural Sciences and Engineering Research Council of Canada 2 X - T
F—h I,

2. Model Structure

2.7 M

MoorDyn uses a lumped-mass approach to discretize the cable dynamics over the length of the
mooring line.

MoorDyn X, 288 74 va&Ricb 27— 7 viEiofigibicEHE E (lumped-mass) 7 7w
—F 2T %,

A cable is broken up into N evenly-sized line segments connecting N+1 node points.

T—=7 03, NHDEEFEIA XD 74 vESRICHEIE NS, N [HOERIT N+1 O % 83
%o

The indexing starts at the anchor (or lower end), with the anchor node given a value of zero, and
the cable segment between nodes 0 and 1 given an index of 1/2.

FFEZT v A— (X723 Miw) 205F 25, 7vh—HiRidFs¥ochd,

figi0 L 10D 4AvERIZL/2LT 5,

The model uses a right-handed inertial reference frame with the z axis being measured positive up
from the water plane, consistent with NREL's FAST simulator.

ETNBATREWERRA ZEM T 5, Z %2 K2 ofnE LM Zic e 5, NREL © FAST ¢[A
Cic L7,

Each node's position is defined by a vector r.

FEIMOMEIZNZ b r CERIND,

Each segment of the cable has identical properties of unstretched length, diameter, density, and
Young's modulus.

FIA VEREIRIEMES, B BE, Y v 7rER3E—,

Different cables can have different sets of properties,

and cables can be connected together at the ends,

enabling mooring systems with interconnected lines.

B —7NEIRBIFREZR T2, 7 -7 ijﬂ”ﬁ*K“CEb\ T E B,

MASR 7 A v e BT 20 A7 Lzvafigicd

The ends of each mooring line are defined by Connection objects, which can be considered a special
type of node.

BARE 7 4 v DifEfld Connection A 7Y = 7 PICX o TEFREIND,
INRHIROR®REX A4 T ELLND

Using the same terminology as MAP [2], there are three Connection node types:

MAP [2] L[L, 300D % 4 7OEAEHim 2B 5,

Fixed nodes have a certain location and never move. They can be used as anchor points.

Fixed HisiiIFEDGHi» BB L, Ty A—FA v e LTERT 5,

Vessel nodes can move under the control of an outside program. They can be used as fairlead
connections.

Vessel fimii3fM 7w 77 L ORI P CREIT 5, 7 =27 V) — FEERIciflah s,

Connect nodes are not fixed in space but rather are moved according to the forces acting on them.

Connent fisil3ZEMICEE T ks, FRS 2 hicic L <BET %,

They are what can be used to connect two or more mooring lines together.

2O EDMRE 7 A4 viERIcHEl Sz,

The forces they experience can include the forces from the attached mooring lines

(which Fixed and Vessel node types also experience)

but also constant external forces, buoyancy forces,

inertial and gravitational forces, and hydrodynamic drag and added mass forces.

ZTENIMEE I A v oDI72F T (Fixed, Vessel fiisiz 4 7 3%Z1F %), SO —ETI.

AL BB X OET, R ARER N2 ST,

Hydrodynamic loads are calculated directly at the node points rather than at the segment centers.

AT E T BRIl e BiANIE CRIRE S L 5,

This ensures damping of transverse cable vibrations having a wavelength of twice the cable segment

length (which may or may not affect anything).

CNERBTT AT — 7RI DR ZHERICT 5, 74 VERRID 2MEDEEZ D D,
(CHESFEEL 2)

To approximate the cable direction at the node points, the cable tangent at each node is assumed to

be the average of the tangent directions of the two adjacent cable elements.

iR =70z Ebld 5720, FHRICET 27 -7 RS, BT 2 2 207

A VEROERITIN O LAET 5,

Aside from this detail, the formulation of the mooring model is fairly standard.

ANCE2 S REETAVOERIZ A2 Y FHERTH 2,

Further technical details and some validation results are available in a paper in Ocean Engineering

[1].

BT 7258/ & . W oD ORRGEERR I, FSCICR T s (1],

Some technical details and results related to MoorDyn's capabilities for interconnected lines and

mass/buoyancy/drag elements in the mooring system can be found in a recent EWTEC paper [3].

MhAEm I N T4 v LR R T LOEE/F/HTT1%E3ED MoorDyn DHRESICEHE T 2 v <

D> DEANHY 72 FEM & AR, LD EWTEC Gl Icii# 115 (3]s

3. Model Operation

3. T VERE

MoorDyn is meant to be used in conjunction with another program that tells it how the fairlead ends
of the mooring lines are moving.

MoorDyn 35| 70 777 £ bl GbE THEMT 2 L 5 WEMI NS 5 70 7T L3R FKin D
77V = FOBEIZEIZZ %,

This other program can be as simple as a Matlab script driving MoorDyn with sinusoidal fairlead

motions or as complicated as a FAST simulation of a floating platform and wind turbine.
B7w 277 %, N7 =7V — FiEB)T MoorDyn #EX&E)3 2 MATLAB X7V 7 F o X

S YR IGE B HIE, FET T v P 74— LA X - YD FAST v Ial—vavok
O MR AL H B,
Two versions of MoorDyn exist.
MoorDyn IC 2 DD N— 3 V BIFEET b,
The 'C' version, written in C++, can be coupled with a variety of codes.

CH++THri [C] N=Yavid, Hkiha—-FLeEETE 3,
The 'F' version, written in FORTRAN, is a module contained in FAST v8.
FORTRAN Tt 7z [F| &, FASTVBICEENDEY 2 — VL ThH 5,
The underlying model is similar in both cases, just the implementation is different.
HEEL 2T VBRI TH Y, BICEESRL D,
One important difference between the two is that MoorDyn C currently couples about the platform
reference point;
E OEERE WL, HE MoorDyn Cl3 77 v + 7 4 — LREHEN CHKT L2 L TH 5,
platform motions and mooring reaction forces/moments are communicated with respect to a single
point and the platform is assumed rigid.
77y 74— LOEH EREKS)/ B AV PR RSN LTEES R, TT v b7k — Al
WA L e 5,
MoorDyn F, however, couples about the individual fairleads; platform motions and mooring
reaction forces are communicated separately for each fairlead, allowing the possibility of
flexible/multi-body platforms.

L2 L. MoorDynF 3l # D7 =7V — FCEKT %,
HE72T)—=FCBWTT 7 v+ 74— 20EB KR ORERINIEINCZZEE NS,
CNRE/EBT 7y F 74— LEHREICT 5
Regardless of the version, the basic operation of MoorDyn is the same.
N— g VICE%R 7 . MoorDyn ORI RIEEIXF L TH 5,
During initialization, MoorDyn reads the input file describing the mooring system,
constructs the mooring system data structures, determines the initial fairlead positions based on the
initial platform position specified by the calling program,
and then determines the initial equilibrium state of the mooring system.
FIHLIC, MoorDyn (3R > A7 L% GLilk L= A1 7 7 4 V&G,
R AT LT — 2 HERMEE L, WOHL 707 M Ko TIREI N T 7 v v 7 4 —
LOMEICHESNT, Y7 =7 V) — FEZIRET 2,
KIHRE > 27 L OYIHIHEIRE 2 HIE S 5,
Determination of the initial state happens in two steps.
PIHAREEIZ 2 DD R T v T THREI NG,
In the first step, a quasi-static model is used to determine the locations of the nodes along each

mooring line.

F1RATy 7Tl EFHFHNET AT SN, BHRE T4 viciho LHIRALEZRET 5,

The line ends are located according to the fairlead, anchor, and connect (if applicable) coordinates
provided in the input file.

74 vl 7 =7V —F. TV A—icfito TREI N, AN 7 7 A VoEEEERT 5 (%
YT 2586)

In the second step, dynamic relaxation is used to allow the mooring system to settle to equilibrium
according to the MoorDyn model.

H2 ATy TTIEBEMAEH IS, #8227 413 MoorDyn € 7 W ICHE o THHIC Tk
ERRA)

If there are no connect nodes, this will simply fine-tune the results of the quasi-static model to
account for the discrete approach of MoorDyn.

connect fiifiA L \WIGA, TAULIREEETE TV ORIR LIS 5

MoorDyn QBT 70 —F % E[ET %,

If there are connect nodes, this will allow them to settle to their correct positions, rather than the
guessed positions provided in the input file.

connect fifmiB3H 256, A7 7 ANVTREI N ZHEHIME LY b

o DIELWIEICEDE L,

During each coupling time step, MoorDyn accepts the latest platform or fairlead position and
velocity information provided by the calling program and applies these to the appropriate fairlead
nodes in its model.

B R 7 v 7T, MoorDyn (ZMEUNH L 70 7" 7 LT X o TIRIEEI N B RIFTDO T T v b 7+
—L%E7237 =27) - Mgl L HERREZZIRY . 20T AHOMEY 27 27) — FHi
RIS 2B %,

It adjusts its internal time step size (dtm) to ensure that the coupling time step size (dtg) is a
multiple of dtm.

i, HEEEEE R T v 79 4 X (DTG) 4 DTM OfCH 3 Z & 2HEFRICT 5 720, K
27y 744X (DTM) %3 %,

It then runs its internal RK2 integrator for Nt time steps, where Nt=dtg/dtm.

Z D, PIE RK2 B9 % Nt B2 7 v 747 5, Nt=dtg/dtm

During each model evaluation from the RK2 integrator, a number of steps take place:

RK2 #5025 &€ 7 NVl O, LT OSEDRT v 7HBFEFmI N5 -

The fairlead kinematics at times t and t+dtm/2 are calculated.

R4l t & t+dtm/2 7 = 7) — FiEE2FHE I N 5

The forces on the nodes of every Line are calculated.

74 VOO EEIND,

The accelerations of the internal nodes of every Line are calculated.

AV ONEEHI R OMEERHEINS,

The forces on each Connection node are calculated by summing the contributions of any connected
lines as well as any external forces.

Connection fiifid JJ %, ke 7 4 v o iomE» bHEE T 5,

The accelerations of any connect-type Connection nodes are calculated.

Hht % 4 7D Connection Him ONIEE % 5HH T 5,

The calculated accelerations of the internal and connect nodes are integrated twice to find the
velocities and positions of the internal and connect nodes at time t+dtm.

PR ER AL & B B R D IR 1. Rl t+dtm OEIR OMEE, (LB %KD 5720 2 BTN 5,
At the end of the coupling time step, MoorDyn returns the resulting net mooring force (in six
directions on the platform) or individual fairlead forces to the calling program.

MK 2 7 v 7O TIRFIC, MoorDyn X IEBEDRE) (77 vy b7+ —2D 6 J57m) b L L IE
fidxD7 27V —FI%z2iRT,

One or more output files may be written at this point depending on the MoorDyn version and the
settings.

MoorDyn =¥ 2 VRFREIC L > TiE, TORRT—2F R 3EROE I 7 7 A Ao hEDIND,
During termination, MoorDyn deallocates variables and closes the output files.

& TR, MoorDyn I3, ZHEEILCTEMERLHE N7 7 AV %L %,

More details about the function calls available to the calling program to make MoorDyn run are
described in Sections 5 and 6.

MoorDyn T TZ 2 L 70 77 L BT O LEE23 6 5 5 XUV 6 ICii#iE 15,

In the C++ version, the fairlead position at each model evaluation is calculated

by integrating the most recent velocity supplied by the calling program.

C++ "=V avTliE, EETNHEO 7 = 7Y — FALE I,

ML 7'u 77 oI N 2w E s batE I N 5,

This assumes constant fairlead velocity within each coupling time step.

T, FEEREAT Yy TNT—E7 =27) — FEEZET %,

In the FAST v8 version, the modularization framework's ExtrapInterp subroutine is used to provide
a more accurate estimate of the fairlead kinematics within each coupling time step.

FASTV8 Tix, €Y a— L7 L — 247 —7 @ Extraplnterp % 7 v —F v 2MEH I 5,
FEEIRE R Ty TR T7 =27 V) — FEE O X Y IEERHEEE R 2,

4. Describing the Mooring System

445 v AT Lotk

The entire description of the mooring system as used by MoorDyn is contained in one input file.
MoorDyn Tl 2 1L 2 (R v A7 LR OFHHIZ 1 DD AN 77 A VICEEN D,

The structure of this file is based on the MAP input file format by Marco Masciola [2], but without

MAP's 'depth' and 'repeat’ functions and with some additions for supporting a dynamic mooring
model.

D7 7 ANDREEIX. Marco Masciola ® MAP A1 7 7 4 AfERIcHK o< [2],

L2 L MAPICiE [EE] & [V v — 1] HREX R WD, BINRBEET L2V K — P Dbl
DB T Nz,

There are a few differences depending on whether the C++ or FAST v8 version of MoorDyn is used.
MoorDyn @ C ++ % 7213 FAST V8 T, W D0E W2 H 5,

In the C++ version, the input file must be called 'lines.txt' and exist in a subdirectory named
'Mooring'.

C++Tld. AJ17 74 viF [ines.txt] FEETH Y, Mooring 7 4 L7 P VIicE L,

In the FAST v8 version that filename can be specified separately.

FASTV8 TiZ7 7 A V4 I3H % ICHRETE %,

Below is an example MoorDyn input file for the OC3-Hywind mooring system.

AT ix, OC3-Hywind (2 v A7 L ®D MoorDyn AJJ7 7 AVTH 5,

Lines in blue are specific to the FAST v8 version of MoorDyn; they should be omitted when using
the C++ version.

%% MoorDyn ® FASTV8EH TH 5, C++TIHAMING,

--------------------- MoorDyn Input File -----------=----mmmmmmooe e
MoorDyn input file of the mooring system for OC3-Hywind

*FALSE Echo - echo the input file data (flag)

----------------------- LINE TYPES -----cmmmmmmmmmmmmc e
*1 NTypes - number of LineTypes

Name Diam MassDen EA BA/-zeta Can Cat Cdn Cdt

(-) (m) (kg/m) (N) (N-s/-) (-) (-) (=) ()

main 0.09 77.7066 384.243E6 -0.8 1.0 0.0 1.6 0.1

*6 NConnects - number of connections including anchors and fairleads
Node Type XY Z MV FXFY FZ CdA Ca

(-) () (m) (m) (m) (kg) (m"3) (kN) (kN) (kN) (m"2) (-)

1 fixed 853.87 0.0 -320.00000000

2 fixed -426.94 739.47 -320.00000000

3 fixed -426.94 -739.47 -320.0000000 0

4 vessel 5.20.0-70.00000000

5 vessel -2.64.5-70.00000000

6 vessel -2.6 -4.5-70.00000000

*3 NLines - number of line objects

Line LineType UnstrLen NumSegs NodeAnch NodeFair Flags/Outputs
() () (m)) ()))

1 main 902.220 14 p

2 main 902.220 25 -

3 main 902.220 36 -

0.001 dtM - time step to use in mooring integration (s)

3.0e6 kBot - bottom stiffness (Pa/m)

3.0e5 cBot - bottom damping (Pa-s/m)

320 WtrDpth - water depth (m)

1.0 dtIC - time interval for analyzing convergence during IC gen (s)

60.0 TmaxIC - max time for IC gen (s)

4.0 CdScalelC - factor by which to scale drag coefficients during dynamic relaxation (-)
0.001 threshIC - threshold for IC convergence (-)

------------------------ OUTPUTS ----mm oo
*FairTenl

*FairTen2

*FairTen3

*AnchTen3

*L2N4pX

*END

The Line Types section of the file contains one or more definitions of physical line properties and
four hydrodynamic coefficients.

Line Types Tld. 74 v OYIFED 1 DU LOER. 4 D DMENEEAE TS,

The columns are, in order, as follows:

FIDNEFIZU T D B TH 5,

Name: an identifier word for the line type

Name : 7 4 v O+

Diam: the volume-equivalent diameter of the line - the diameter of a cylinder having the same
displacement per unit length (m)

Diam : 7 4 v OFEHEYER, BUESYZ VR CAEBEEET 52) Y X OEE (m)

MassDen: the mass per unit length of the line (kg/m)

MassDen : Hifi KX 47) 0'EH & (kg/m)

EA: the line stiffness, product of elasticity modulus and cross-sectional area (N)

EA + 74 vl s e Wi om (N)

BA/-zeta: the line internal damping (measured in N-s) or, if a negative value is entered, the

desired damping ratio (in fraction of critical) for the line type

(and MoorDyn will set the BA of each line accordingly - see Section 4.1 for more information)

BA/-zeta : WEREE (H47Z N-s), BEDEE, 74 v 24 T7OFL Ol (FEfoE
(MoorDyn (3% 7 4 VTG LT BA %3 ET 5, aflli 4.1 HizR)

Can: transverse added mass coefficient (with respect to line displacement)

Can: #/7mOAMERRE (74 Y EALITHIES)

Cat: tangential added mass coefficient (with respect to line displacement)

Cat: HRIT R DAINE BER% (74 VY EMICHIES 5)

Cdn: transverse drag coefficient (with respect to frontal area, d*])

Cdn: B&I7IPT %% (ATHEERE ISR LT, d*D)

Cdt: tangential drag coefficient (with respect to surface area, & *d*1)

Cde: Hef7 Pt hfRE GRS LT, 2 *d*)

The Connection Properties section defines the connection node points which mooring lines can be
connected to.

Connection Properties fil3{R8 7 4 v 2 &k IR e Baciii i 2 €& 3 %,

The columns are as follows:

FHILA T DL B TH 5,

Node: the ID number of the connection (must be sequential starting with 1)

Node: #fi0 ID &5 (1LY Tilfgo &)

Type: one of 'Fixed', 'Vessel', or 'Connect’, as described in Section 2.

Type: 25 2 ZitBHD X 9 IC'Fixed', 'Vessel', 'Connect'd &' {15

X,Y,Z: Coordinates of the connection (relative to inertial reference frame if 'fixed' or 'connect,
relative to platform reference frame if 'vessel').

In the case of 'connect' nodes, it is simply an initial guess for position before MoorDyn calculates
the equilibrium initial position. (m)

XY, Z: &kt D ERE (‘fixed' or 'connect' TIXEMERAE T L — L I2BIL T, 'vessel D& T T v b7
+—LDHEHET L — LI L T),

'connect i ;i Tlx. MoorDyn 23PN E 2 H 3 2 R, (7E O HIHAHEE (m)

M: node mass in the case of clump weights (kg)

M: 7 7 v 7EEOfiHE R (kg)

V: node displacement in the case of floats (m”3)

V: 7\ — b DS AR (m"3)

FX,FY,FZ: any steady external forces applied to the node (N)

FX,FY,FZ: HisticfFH 3 2 8% 511 (N)

CdA: product of drag coefficient and projected area (assumed constant in all directions) to calculate

a drag force for the node (m”2)

CdA: Him OHIIEHRHOPNRE L B OM (&7 m—kk e fkE) (m"2)

Ca: added mass coefficient used along with V to calculate added mass on node
Ca: fiioBMERET 272DV & —FFICHEH X5 MIE 2455

The Line Properties section defines each uniform-property section of mooring line to be simulated,
specifying which physical properties it uses, its length, how many segments it is discretized into,
which nodes it is connected to, and any data to be output in a dedicated output file for that line.
Line Properties |3, RS2 &RE 7 1 v O —LttkeERT 5,

S 2 PUBIMERR. R, BERCESRE. BRI n2in, HhIns 7 -2 %246ET 2,

This last entry expects a string of one or more characters without spaces, each character activating
a given output property.

ZORBEDOTY b YIE, EHDR 1 LFLL O SCEIN BB,

FIFR fEEINEIERRET 7 7 4 7ICT 5,

A placeholder character such as '-' should be used if no outputs are wanted. Eight output properties
are currently possible:

HABBELZWIGEIR, - REDTL - AR I LT REHTIHERD B,

BFE 8 D)) 7 a T 4 3A]HE

p: node positions

P : ffi ifzE

v: node velocities

Voo H R

U: wave velocities at each node

U @ ZHIR D PR

D: hydrodynamic drag force at each node

D : ZHi okt

t: tension force at each segment

T : FHEFR DI

c: internal damping force at each segment

C: REFRONHET

s: strain of each segment

S: HEKDVT 4

d: rate of strain of each segment

D: FERDO VT AK

For example, outputting node positions and segment tensions could be achieved by writing 'pt' for
this last column.

7ol 2 0E, EiRIE & ERENEHI T 21k, &EOIIIC [pt] Zididd 5,

These outputs will go to a dedicated output file for each line only.

TN NIBITEHOE 17 7 A VICEEIT 5,

For sending values to the global output file, use the Outputs section instead.

ru—n7 7 ANVICEZ S 2856, b VI Outputs £ 27 & 3 v 2T 5,

The Solver Options section can contain any number of optional settings for the overall model,
including seabed properties, initial condition (IC) generation settings, and the time step size.
INN=F TV a VBB ERET VDX T 2 v OFREXRTEOMETD,

MERE, ISR (IC) DAEREOE. WA T v 79 A X EhREEN S,

Any of these lines can be omitted, in which case default values will be used.
INLDITIZEIETE, ZDHAT 7 40 MESEH IS

As such, they are all optional settings, although some of them (such as time step size) often need to
be set by the user for proper operation.

DX, T_XTR AT avFEETH L, LirL, W2 REYREMN D702 —3HEk
ET20END L, (NEAT Yy 7HA X E)

Note that the names for these have been changed in the latest C++ version, v1.0.1C.
INHDAHNL, BHTD C++AR. v1.0.1C TEHI N T3 T L ICHER,

The list of possible options is:
AR A 7y avidUToLsy,
dtM: desired mooring model time step (s)
dtM : TR DR E T AR R T v 7 (s)
g: gravitational constant (m/s"2)*
g HIIER(m/s"2)*
rhoW: water density (kg/m”3)*
rthoW : /KD % fE (kg/m”3)*
WtrDpth: water depth (m)*
WitrDpth : /K% (m)*
kBot: bottom stiffness constant (Pa/m)
kBot : WL E % (Pa/m)
cBot: bottom damping constant (Pa-s/m)
cBot : MHIEKIHEEL (Pa-s/m)
dtIC: period for analyzing convergence of dynamic relaxation IC generation (s)
dtIC : #JiIZF IC (Initial Condition) &R BIRIRERI D ILH AT DI (s)
TmaxIC: maximum simulation time to allow for IC generation without convergence (s)
TmaxIC : K7 L T ICERWREARRAD Y L 2L — = VI (s)
CdScalelC: factor by which to scale drag coefficients to accelerate convergence of IC generation (-)
CdScalelC : IC IUR 2 IE 3 2 FLNRE D 27—V v 765 # ()
ThreshIC: convergence threshold for IC generation, acceptable relative difference between three

successive fairlead tension measurements (-)

ThreshIC: IC 43 2 IR L X Wil @i+ 2 32007 27V — FIRNBIEMEOTRZE (-)

*In the FAST v8 version, the default values for g, rhoW, and WtrDpth are the values provided by
FAST, so it is recommended to not use custom values for the sake of consistency.

* FAST V8 Tld. grhoW,WurDpth ® 7 7 #)L M il FAST 2@k 3- 2 720, #7 2 & L%
L7z,

The bottom contact parameters, kBot and cBot, result in a pressure which is then applied to the
cross-sectional area (d*]) of each contacting line segment to give a resulting vertical contact force
for each segment.

I LY 7 A — 2 kBot & L U cBot 13, &#Hfih 7 4 v ESR oW (d*) WA ohn 3L %
b6 L, Mike LTHEROEEEM) 2155,

The Outputs section is used in the FAST v8 version to specify general outputs,

which are written to the main MoorDyn output file and

also sent to the driver program for inclusion in the global output file.

Hifie 2 v a VI FAST V8 N = a v C—fRINAMNI Z8ET 2 20 il dn 3,
INHLDOHNIEAAL VD MoorDyn /17 7 A VICEZIATN, Zu—"VHN 7 74 MICED
270D NI4T0 T LICbELND,

Each output channel name should have its own line.

KT v v A BIE, MAD T4 v EFFOZ L,

There are intuitive keywords for fairlead and anchor tensions of a given line:

FBEINZTA VD7 2T V=R T v A—RNOERN =7 —F3H 5,

fairten# and anchten#, where # is the line number.

fairten # , anchten #, # 3fT7&%5TH 3%,

There is also a flexible naming system for outputting other quantities.
thoBEZHNT 2D OFWEF—I VY RATLLD D,

There are currently five supported types of output quantities:

HES Doy F—FrEInhs

pX, pY, pZ: x/y/z coordinate (m)

PX, PY, pZ : x/y/z (m)

vX, vY, vZ: velocity (m/s)

vX,vY, vZ : #EE (m/s)

aX, aY, aZ: acceleration (m/s"2)

aX, aY, aZ : JIEE (m/s"2)

T or Ten: tension (N)

T or Ten : 58J7 (N)

fX, fY, fZ: net force in x/y/z direction (N)

X, fY, fZ : x/y/z FiADIE® D J1 (N)

These can be produced at a connection object, denoted by the prefix Con#, where # is the connect
number.

BefeA 7Y = 7 M id Con#TRIN DS, #I3EHFTTH 5,

Or, they can be produced at a node along a line, denoted by the prefix LN@, where # is the line
number and @ is the number of the node along that line.

HDBHIE, TAVIChoZHimTERIN, LIN@RTRING, #1374 V&S, @x 714 VIicih
SR TH 5,

For example, Con3vY outputs the connection 3 y velocity, LZN4pX outputs the line 2, node 4 x
position.

B 21X, Con3vY & connection3 D Y ML % Hi /), L2N4pX 1Z7 4 v 2, Hiri 4 © X &z)
35,

These capabilities are not yet included in the C++ version of MoorDyn; instead, this version always
creates a lines.out output file containing the tensions of all fairlead connections.

o DfEREIZ. £72 MoorDyn @ C++ic&ENn T, bhic, BicIRXTo7=27) —
N DR)1 % & lines.out 7 7 4 VEERKT %,

For now, any additional quantities can be obtained by using the optional line-specific output files as
defined in the Line Properties section.

2T, fEEDEMEIX, Line Properties ¥ 7 ¥ a v CERIN/IA T a v I 4 VEFD
W7 7 ANEEHT 22 LICkoTREZENRTE %,

4.1. Model Stability and Segment Damping

4.1, T NOLEN & LR

Most of the entries in the input file are pretty straightforward and can be set according to common
sense.

A7 7 ANVHOIEH DS L A ERIEHICEFETH Y, HFBIICRETE 2,

Two of the trickier input parameters are the internal damping (BA) for each line type, and the
mooring simulation time step (dtM).

P F = AT ARIZ, %7424 7OWEHE (BA)., EBREY I —2 a VR
27 v 7 (DTM) T» %,

Both relate to the discretization of the lines.

Wiz e b 74 v ORERLIcBAfR T 5,

The highest axial vibration mode of the lumped-mass cable representation would be when adjacent
nodes oscillate out of phase with each other, as depicted below.

EhERT — 7 ARBICE T 2807 IRB) O BRRE — N, BEREED 23 A ISl AHIRE) 5 % &
FIHET 2,

In this mode, the midpoint of each segment would not move.

CDE—FTIE, BEROPTRLBEL 20,

The motion of each node can then be characterized by mass-spring-damper values of

Zoth, KHiROES) L, BE-1Iha- X v A ECREOT LN

m=wL/N, c=4NBA/L, k=4NEA/L

m=wL/N, c=4NBA/L, k=4NEA/L

The natural frequency of this mode is then

ZDE— FOREFAREBBIZIUTTH S

wn=sqrt(k/m)=2/1*sqrt(EA/w)=2N/L*sqrt(EA/w)
wn=sqrt(k/m)=2/1*sqrt(EA/w)=2N/L*sqrt(EA/w)

and the damping ratio, Xi, is related to the internal damping coefficient, BA, by

IREELL & IR R A BA ICBAfR T 5

Xi=c/c_crit=B/I*sqrt(A/Ew)=NBA/L*sqrt(1/EAw)
Xi=c/c_crit=B/I*sqrt(A/Ew)=NBA/L*sqrt(1/EAw)

-> BA=XiL/N*sqrt(EAw)

The line dynamics frequencies of interest should be lower than wn in order to be resolved by the
model.

74 v OEHEREIT wn X VKW &, ETAICK > THEL 20,

Accordingly, line dynamics at wn, which are likely to be dominated by the artificial resonance created
by the discretization, can be damped out without necessarily impacting the line dynamics of interest.
L7235 T, wn TDJ 4 v @)L, BERULIC X o TED M2 HBEIHRICR T e, 74 v ol
Wk 2 EENCHE B A G2 5 2 LR BHESELILDTE %,

This is advisable because the resonances at wn can have a large impact on the results.

wm OHRDVFERICKERFELFFO LN TELIDOT, INEBEIDTH 5,

To damp out the segment vibrations, a damping ratio approaching the critical value (Xi=1) is
recommended.

HHRIREN 2S¢ 5720, HiFfE (XI=1) IGEWERA RS W2,

Care should be taken to ensure that the line dynamics of interest are not affected.

AV OEFPHEINT L SERET 5,

To simplify things, a desired line segment damping ratio can be specified in the input file.
VFizfisics 2720, TEOERMELIZ, AJJ7 7 AV TIRETE 5,

This is done by entering the negative of the desired damping ratio in the BA/-zeta field of the Line
Types section.

Z g, Line Types ® BA/-zeta ICFTED B DJELE AT 5%,

A negative value here signals MoorDyn to interpret it as a desired damping ratio and then calculate
the damping coefficient (BA) for each mooring line that will give every line segment that damping
ratio

(accounting for possible differences in segment length between lines).

2T, ADMEERRET 5 L, MoorDyn I3 Z WA HEDOWELL L L TIRL., T X CTOHS I
Rz 5 2 2 BRHMOMERE (BA) 25t H T 2, (74 VHOERROAZREZEFICANS),
Note that the damping ratio is with respect to the critical damping of each segment along a mooring
line, not with respect to the line as a whole or the floating platform as a whole.

WELIE, R 7 A VICih o R EROMFRRICBEL T Y, I v eEREE3HET 7 v
b7 d — DAREICH LT TR,

It is just a way of letting MoorDyn calculate the damping coefficient automatically from the

perspective of damping non-physical segment resonances.

MoorDyn (C#JBER T WiEr O IR Z R & 2 L w5 Blis b BEIINICHERECE GHE X &

5T7ETH B,

If the model is set up right, this damping can have a negligible contribution to the overall damping

provided by the moorings on the floating platform.

ETADBELSAREIN TN, ZORERER, FE 77 v 7+ —LffFIC ko TRt N2

BRI A CHEIKL R WAlREERH) £ 37,

However, if the damping contribution of the mooring lines on the floating platform is supposed to

be significant, it is best to (1) set the BA value directly to ensure that the expected damping is

provided and then (2) adjust the number of segments per line to whatever provides adequate

numerical stability.

LLl,.78—=74 v 2777y 74— L EOREROBREGTGPELETDH S LBEINIHA,
(1) YT 2 WEIHRICIRMtE N2 X)i BA EZEERE L, Ric (2) EEREFKS

Y] e AR EE R R AT 2 b o Th M T L,

4.2. Diagnosing Problems

4.2, FEDZH

The factors described in the previous section are the source of most problems encountered by new
users.

HIETCRRBA L 2 R, Fil e —F — 258l 213 L A COREDIHTH %,

Another source of problems is the initial positions of connection points in more complex mooring
systems.

MED M DWIL, XV EMRRE Y AT LICE T 28R4 v F oW ETH 3,

Most problems reveal themselves during initialization, while MoorDyn does a dynamic relaxation
process, running the model with the initial fairlead positions to allow the mooring system to settle
to equilibrium.

13 & A EDREIZFIIALHICHA S 221272 Y £ 23, MoorDyn IZEIHIFER 7' 0 & X % FT L, f&H4]
D7x7)= FOMETETAZFITL, HRECRT L2 FEIRBICEDEDPE S,

In the case of instability (NaN results) or other suspected problems during this stage, the following
is a method to see what is happening.

ZOBPECALE (NaN) PbofED L WIEEAFAE L I5E. RO LRI > TwEhE)
D RS %,

First, ensure that the node position outputs are enabled for each line (set with output flag 'p').
BONC, 7 — BN E 74 VI L TAMNIC > TWwa 2 L z2lEld 5 (7 72 'p'T
L) o

These allow post-process visualization of the mooring line behavior.

Tk, REROEEZ KR P 7o 2Tt T& 5,

Then, set TmaxIC = 0.
KiZ, TmaxIC =0 ICEKET 5,
This will bypass the dynamic relaxation stage and start the simulation only from initial conditions
calculated by the catenary quasi-static algorithm for each line.
T, BIEMA T =V %A N, 74 vohTFIVERNTLITY XL K> CEHR
INEWEHELSDH Y I a L —v a v AT 5,
Connection points will start at their initial positions as specified in the input file.
i sd, AN 7 7 4 VCHRE S NWIGLE 2 5 BAtG S 5,
This mimics the dynamic relaxation process in a way in which data can be output, in order to see
what is actually happening.
hiF, EBICMBIEI > T i REE0IC, 7221722 R TE 2 X5 ICEINE
M7 vt 2% T 5,
The only difference in the model between this normal operation and dynamic relaxation is that the
damping forces cannot be exaggerated.
Z Ol EE) & BFVRAIR O T A BT 2D Z, MENEHRT 2L TERNS
ETH B,
(This is not normally the issue with dynamic relaxation problems. If it is, it can be solved by just
setting CdScalelC = 1.)

(THITEHE. BIREAMEEOME TR v, B LZ 5 ThHE, CdScalelC=1%2FKET S &
TR TZ 2)
Visual analysis of the line motions given by the above process usually indicates what sort of problem
the model is encountering.
LRROT a2 L > THEZONMOB X DETHIOH T, WH, E7APEEL T 5 [HE
DR ZRT,
Once problems are resolved, the dynamic relaxation initialization can be turned back on (TmaxIC
> () and a damping exaggeration (CdScaleIC > 1) can be applied to provide a faster initialization
to static equilibrium.
MEDE S 5 & BRI 2 4 VIt RS 2 L 28T & (TmaxIC>0), Xy ey 7t —o
—27'L—7 4 v 7 (CdScalelC> 1) Zi#i/f] L THHIAMI{LZ L RCOIIL T 2 e piTcE£9,

5. MoorDyn for FAST v8

5. MoorDyn for FAST V8

In parallel with the C++ version (see Section 6), MoorDyn has been completely rewritten in
FORTRAN for inclusion in FAST v8, with guidance from Marco Masciola, Bonnie Jonkman, and
Jason Jonkman.

C++hik (6 =% ZMH) &ififT L C. Marco Masciola, Bonnie Jonkman, and Jason Jonkman ® 77 4
KAk, FAST V8 IC&® % 7-% FORTRAN IcH &1z b7z,

The original model structure was retained as much as possible.

V) YFoET AL, ATRERIR Y RFFE Tz,

There are no known/intentional differences in the mooring dynamics represented by this version of

MoorDyn compared to the original C++ version.

AV ¥ F D C++RRICEE R MoorDyn IZ X - TR X 1 2 (RSN I BRI/ BRI & 13780,

There are important differences in the interfacing functions, however, since MoorDyn F follows the

FAST Modularization Framework [5], which specifies certain function forms and data structures to

achieve a high degree of control over the coupling.

L 2> L. MoorDynF &, 8K D& B 7 il % SEBL T 2 72 0 O FeE O BIFIEA & 7 — 2 it & 455E

9 % FAST Modularization Framework [5]ICfiE> T 3728, 4 v & 7 = — ZABAEICEE 7nE W

b5,

The important subroutines for coupling with MoorDyn F are:

MoorDyn F & DG OEELR I TV —F Vid, RDEBYTH 5,

MD_Init: initializes MoorDyn, including reading the input file, creating the mooring system data

structures, and calculating the initial conditions.

MD_Init : MoorDyn O#Jii{t, AJ17 7 A L% G BRE S 2T L7 — 2 &% ER L. ¥

MRS 2,

MD_UpdateStates: instructs MoorDyn to run its model from time t up to time t+dtg in a loose

coupling arrangement. It accepts inputs about the fairlead kinematics and returns the fairlead forces

at the end of the time integration.

MD_UpdateStates : MoorDyn ICF#4l] t 26 t+dtg ¥ COBUEMGH 28R T %, 727V —FD
EEj e AN e LTI AN, REBESORET7 =7) — Fh%2RT

MD_CalcOutput: calculates all requested output quantities based on the provided states of the

mooring system.

MD_CalcOutput : ER I 7N BEZFRE > A7 L ORAHREBICHE SV CEIHRET 5,

Requested general output quantities are written to the MoorDyn output file and also returned to

FAST for possible inclusion in the global output file.

gk n-—ME B IR, MoorDyn Hh 7 7 A nicEZFATh, Zu— A7 74 icEe

5ZLHNTEDLLIICFASTICHEI NG,

Outputs for line-specific files will be written if enabled.

BN L7256, A VERO 7 7 A VOB HFEAENE T,

MD_CalcContStateDeriv: contains the core of the MoorDyn model.

MD_CalcContStateDeriv : MoorDyn €7 LD a7 23& i 5

Based on the current inputs and state variables, it calculates the instantaneous forces on the mooring

system nodes.

BAED AN EAREELICH DT, R AT L DfiRIcE T 2B 0 125 H T 5,

From these, it calculates the node accelerations, which are the derivatives of the state variables that

can be integrated to move the model forward in time.

NS ho, HidOMEENGHEING, T, ETAZREERT 2 -0 103 5 K08

R

BOEEMTH 5,

This subroutine is called by MD_UpdateStates in a loose coupling arrangement.

DY T N—F viF, BEERKICE T S MD_UpdateStates I & o> THOH X115,

Alternatively, it can be called by the driver program in a tight coupling arrangement. It is also called
by CalcOutput.

HDHWE,FHERICBITE A7 077 Lo THOIT Z LR TE 5, 72, CalcOutput
Lo T I NG,

MD_End: terminates the MoorDyn portion of the simulation and cleans up memory.

MD_End: v Izb—v2v®d MoorDynfis a4 T L, A€V %22) —vT v 735,

The arguments and operation of these functions follow the FAST Modularization Framework, which
can be referenced for more information.

NS DREBOFI R BIFIZ.FAST £V 2 — b7 L — L7 — 7 I £ 9, ThiDoWn T,
Az L T 7Z 3w,

Refer to the source code for details specific to MoorDyn.

MoorDyn ~D BRI 5fflic oW T, YV —Ra—FZZMHL T2 30,

This FORTRAN version of MoorDyn is included as a module in FAST v8, available at
nwtc.nrel.gov/FASTS.

MoorDyn FORTRAN iz nwtc.nrel.gov/FAST8 CHIFRIHEZ FAST VB WD EY 2 — L& LT
BIhTunEd,

The MoorDyn F web page is nwtc.nrel.gov/MoorDyn.

MoorDyn F Web ~— (% nwtc.nrel.gov/MoorDyn T %,

The FAST modularization framework [5] focuses on a standard centrally-controlled data structure
that imposes strict requirements on constituent models.

FAST €Y 2 — M7 L — 47 — 2 [5] 13, il 7 — s & icfEmz 4 TCs 0, Mler v
I LB 2 3R

Accordingly, MoorDyn F could be easily coupled with other FORTRAN codes following the same
modularization framework.

L7235 T, MoorDyn Fix, FILEY 2 —ML7 L =247 =215 fthd FORTRAN 22—k &
fEHICHATE 5,

More specifically, if a driver or glue code adheres to the framework in how it calls mooring models,
MoorDyn F will be able to work with it.

KO ERBICE, FIANEFHHa— VB 7L —27 — 2 REL TREET AV LT S
7% E5F 3L, MoorDyn F i3 Z LX)t T & %,

For coupling directly with codes not following the framework or written in other languages,
MoorDyn C is recommended.

7L —La7=2ilibhva—-FRfioF@#EcHErA TRV 2 — F~OEE &I,
MoorDyn C iR HfERE x5,

6. MoorDyn in C++

6. MoorDyn in C++

The C++ version of MoorDyn was written from the beginning with the goal of making the coupling
with other models as simple and generic as possible.

MoorDyn C++hiiZ, FIREZRIR Y o~ v T A2 lHMIChoE 7 v &K T % 2 & % B IcE»
niz,

In contrast to the FORTAN version, MoorDyn C functions are designed for coupling arrangements
in which models keep track of their data structures internally and the data passed between models
is kept to a minimum.

FORTAN ~N— = v & 3R IC . MoorDyn C B, € 7 VS NERIIC 7 — X ffid 2Bk L |
ETAMTE I NG T — 2 2 R/NRICIROFE GRS O 7 1SRG vz,

By working toward generic, minimalistic coupling functions, it should be easier to set up couplings
between different simulation tools, across different programming languages, and perhaps without
requiring source code changes.

— I R/ NROEEKBRREICH W AT 2 & T, B by ialb—va vy — i Bas 7w
7IVIERER, BLXUBZOL Y —Ra—FYOEFELRLICAY 7Y v 7 %FET 5 0MHET
H5,

The source code, Windows binaries, and examples can be obtained from www.matt-hall.ca/moordyn.
v —Za—F, Windows N4 F+ VU, I X OHlE www.matt-hall.ca/moordyn 2> 5> AFTZ 3,
Coupling MoorDyn C with other programs relies on a few simple core function calls, as shown below
with their arguments.

fho 7w 77 2 & D MoorDyn C JHKIE, WL D2 DfffHi7 a 7O UIH LicikiFs 5, %
DI LT ISR,

LinesInit(double X[], double XDI]): initializes MoorDyn, loading the MoorDyn input file and
calculating initial conditions based on platform position specified by array X (size 6). It will write
the t=0 output line to any output files.

LinesInit(double X[], double XD[]) : MoorDyn # #J#i{t 9%, MoorDyn AJJ7 7 A L% v —F
L. B3 X (F4 X 6) THEINEZT T v b 74— LOMEICEDICHIIASRELEET 5,
=0 DENITE N 7 7 A MICEEADRE T,

LinesCalc(double X[], double XD[], double Flines[], double* t, double* dt): makes MoorDyn
simulate the mooring system starting at time t and ending at time t+dt.

LinesCalc(double X[], double XD[], double Flines[], double* t, double* dt) : MoorDyn 23] t 2>
bt+dt FTORBL AT L2 IaLb—bF 5,

The fairlead kinematics are driven by the platform position and velocity vectors (X and Xd) which
correspond to time t.

727V —FOi#EN, Bt D77 v b 74— L DfE X LEER 2 b Xd I X o THRE X
ns,

For each internal MoorDyn time step, the platform velocity is assumed constant at Xd and the

position is adjusted accordingly at each step from the initial value X.

ZMER MoorDyn Rl 2 7 v FIiconwT, 77 v b 7 4 — L@ 1T Xd T—E L {RE S I, (LT
HHEX 22 & AT v 7 T2 ICIG L CGRE IS,

The resulting net mooring force about the platform in six directions is returned via vector Flines.
ZORFR. TT7 v bR —LD 6 TTADIERIFEIEX 2 F v Flines 2/ L TRI N5,
LinesClose(void): This function deallocates the variables used by MoorDyn. It should be called last

before unloading the MoorDyn DLL.

LinesClose(void) : Z ®E8%1% MoorDyn T & 112 £ D& b 24 T % fi#h 3 % , MoorDyn DLL
7 vu— 330N, RRICHFTHEINS,

In addition to the core functions, additional functions exist for specific applications.

a THEREICIN 2 T, FEE D HIED 7= & IGBMORERMEET 5,

A number of these functions exist, and the idea is that additional ones can be created as needed,
without altering the fundamental structure of the model.

TN DREBDB L OPFEL, ETNVOEAMEZZET 22 L, LEITE L TEMDE
MEERTE DL WIEZDLD B,

As new functions are created, [hope they will be shared for the convenience of all users.

MLV S R T2 —F—DEHODICHAINE L 2EY,

Several of these additional functions are currently implemented in the released version:
INODEIEEED W O id, BE, VY —RINTA—Va v THRREINTHET -
double GetFairTen(inti): This is an optional function to return the tension at the fairlead of a given
line (line number 1), which is ideally called after LinesCalc.

double GetFairTen(inti) : ZNIIEEOREKTH Y., G267 ((THF1D) 72TV —FIC
R ERT . HIFHERICIE LinesCale DRI E 15,

GetFASTtens(int* numLines, float FairHTen[], float FairVTen[], float AnchHTen[], float
AnchVTen[]): This is an optional function that returns the line tension variables expected by FAST
v7: horizontal and vertical components of the fairlead and anchor tensions.

GetFASTtens(int* numLines, float FairHTen[], float FairVTen[], float AnchHTen[], float
AnchVTenl]) : 2, FASTv? CHiff a3 74 voRNWERZ RS A7 a vof, 7=
7V — FOKVBXOCEERT & T v —1Rk],

GetStates (incomplete) and SetStates (incomplete): these not yet implemented functions will allow
for getting and setting of the full MoorDyn state vector describing the node positions and velocities.
This can allow for saving simulation states for later continuation, or running the MoorDyn analysis
multiple times for a given coupling time step.

GetStates (incomplete) and SetStates (incomplete) : & L5 RKFEEDOBIEIL, Him OfiE & HE %
L9 % 564278 MoorDyn {REEX 7 P AV ZHUG - &RET 5, ThiCX b, BTk 2720icy
Tab—vaVvREBEZRELZ Y. IEDHARRIA T v 7T MoorDyn fi#tf Z 58RI EIT T 5
TLEBTEET,

All the above functions are accessible to outside programs so that MoorDyn can be compiled as a

DLL for use with other already-compiled codes.

FROBEBII T XTI T 0 77 L5007 7 XA TE DT, MoorDyn iZBEIca v o34 v &
fefioa— N O3 2 DLL & LCay X4 vd 3 EATEET,

Using these functions, it should be easy to use MoorDyn with other simulation tools.

IO DERER T 2 L fhip I 2L —3 3 v Y — T MoorDyn Z {9 3 D1 flj#i ¢4,
The following subsections describe simulation tools that have already been used with MoorDyn C.
LIFofficid, 3T MoorDyn C TfffHE T3 Ialb—va VY — LIl THHL £
E

6.1. Using MoorDyn with FAST v7

6.1. MoorDyn with FAST V7

MoorDyn C was originally designed for coupling with FAST v7 [4].

MoorDyn C i3, % & & & FAST V7 [4] & DR D 72 D ICEREF S iz,

Doing so requires a customized version of FAST containing additional functions for calling an
external program for the mooring dynamics.

Z5952LT, FAST BIEAN—3 a VB TH 5, BIEMIREER /NG 7w 7 T L 20
O SHBEEEREE D,

Source code for a suitable FAST version is available by request.

WL FASTDY —2a—Fid, Y7 A MK OAHAFHRETS 5,

Using this FAST version, MoorDyn can be enabled in place of the normal quasi-static mooring
model

by setting LineMod to 5 and deleting any mooring line entries in the FAST platform file.

Z @ FAST {#H1C. MoorDyn |3l O ¥EFIREET L ORb D ICHRNICTE 5,

LineMod % 5 iC%E L. FAST 77 v b 74— 2D 7 7 A VHNDIEEDOFRE 74 vOoT v b Y %
HIFR 9 %,

The required FAST modifications for coupling with MoorDyn are very similar to those used for
coupling with OrcaFlex.

MoorDyn # ¥ iC 4% 7 FAST {E1E1Z, OrcaFlex K DEIE & JEH ICHEEIT 2,

6.2. Using MoorDyn with Matlab

6.2. Using MoorDyn with Matlab

MoorDyn C can be easily used with Matlab.

MoorDyn C i3 MATLAB Cffific¥% 3,

Aside from the correct setup of the input file, which is common to all MoorDyn use, coupling
between MoorDyn and Matlab can be accomplished in about a dozen lines of code.

AN 7 7 ANDIEMERZRE 1ZF] & LT, MoorDyn & MATLAB DK 13K +1T7D 2 — F CER T
%5,

The following lines show a minimalist example.

EEi{EEBEOD a— F‘ %ﬁ_\‘j—o

%% Setup
X = zeros(6,1); % platform position
XD = zeros(6,1); % platform velocity
N = 10; % number of coupling time steps
dt = 0.5; % coupling time step size (time between MoorDyn calls)
Ts = zeros(N,1); % time step array
FairTens1 = zeros(N+1,1); % array for storing fairlead 1 tension time series
FLines_temp = zeros(1,6); % going to make a pointer so LinesCalc can modify FLines
FLines_p = libpointer('doublePtr',FLines_temp); % access returned value with FLines_p.value
%% Initialization
loadlibrary('Lines','MoorDyn'); % load MoorDyn DLL
calllib('Lines','LinesInit',X,XD) % initialize MoorDyn
%% Simulation
XD(1)=0.1; % give platform 0.1 m/s velocity in surge
fori=1:N
calllib('Lines','LinesCalc',X,XD,FLines_p,Ts(i),dt); % some MoorDyn time stepping
FairTens1(i+1)=calllib('Lines','GetFairTen',1); % store fairlead 1 tension
X = X + XD*dt; % update position
Ts(i+1) = dt*i; % store time
end
%% Ending
calllib('Lines','LinesClose'); % close MoorDyn

unloadlibrary Lines; % unload library (never forget to do this!)

Always ensure that LinesClose is called (calllib('Lines','LinesClose')) and the library is unloaded
(unloadlibrary Lines) before trying to load it again (particularly if the Matlab script hits an error
and doesn't finish) to avoid Matlab closing or crashing.

LinesClose 250331 % Z & %72 L (calllib('Lines','LinesClose")).

e — Foiiic (Ffic Matlab 227 Y 7 AR 7 =2 H L TR T L Tk nga),

7477V %7vu—F3 %I & (unloadlibrary Lines),

TH TN Matlab 3T H 2 0IE7 T v ad 5

6.3. Using MoorDyn with Simulink
6.3. Using MoorDyn with Simulink
Using MoorDyn within Simulink adds more components than coupling with Matlab alone (refer to

the Matlab section also).

Simulink ¢ MoorDyn %M 3 % &, Matlab 72 CHi&ET 2 L WV SEOEZREEMEI NS
(Matlab ot 27> a vy ZEHRoOZ &),

An example is included with MoorDyn.

#5113 MoorDyn IC& 415,

This approach was developed in partnership with Giacomo Vissio at Politecnico di Torino.

o7 7ua—Fi%, bV TF Giacomo Vissio & 2 L THF X 117,

The MoorDyn DLL can be loaded and initialized (with the LinesInit function) by placing the

appropriate Matlab code within the InitFcn6 callback function window of Simulink.

MoorDyn DLL I, Simulink @ InitFen6 22—y ZBH$(Y 4 v F v NIC#E Y] 72 Matlab =2 — F

ZIEST 22k, e—F LWL TZ 2 (LinesInit Bz).

Similarly, MoorDyn can be closed (with the LinesClose function) and the DLL unloaded using the

CloseFcn callback function window.

[EBkIC. MoorDyn i (LinesClose B4%t<) FAL % Z &£ 23 C%, DLL iZ CloseFcn =@ — v o3y 7B

BusvFvEHLTCT ve—FIhd,

During time stepping, we found it best to call MoorDyn's LinesCalc and GetFairTen functions using

a separate Matlab function, which can be called in Simulink as a triggered subsystem.

2 A LAT v 7 AF X, MoorDyn @ LinesCalc B4t & GetFairTen B8#(% . Simulink % F U 77

ANV TYVRTLELTHERET Z LD TE 2|0 Matlab BIEZ MM L CHEOHIS 2 & 24

L7,

The callback functions can be accessed by right clicking in the Simulink workspace, selecting Model
Properties, then going to the Callbacks tab.

T— Ny JEIICT 7w AT 5 IiE, Simulink V=27 AR—=2% 457 Y v 7 L, [T LT AN
TAIE@EIRL Cla—n "Ny 7|27 cBEHT 5,

The time stepping can be implemented using a triggered subsystem block connected to a pulse
generator operating at the desired coupling time (dtg) of the simulation (shown on left).

Rl 2 7 v 7lx, v 12 —v a vOFEofEARR (dtg) (EfiicrdhTnd) CTEfEFF 57
WAFAEBICHER I N VY A= TV AT LT vy 7R HALCERTE 2,

Inside this triggered subsystem, a Matlab function block can handle the communication with
MoorDyn (shown on right).

COMITEINZHT VAT LOAGFTIE, MatlabDd 7 7 v 27 > a2 v 78wy 272 MoorDyn & @
WiE Ut I3 (GRZR),

Below is an example of this function.

LIFiE. CoB#oflitd s,

It passes the platform position and velocity as well as the current time and time step size to LinesCalc.
77y b 74— LONE & W, BIEOKHE & KD 2T v 79 4 X% LinesCalc ICJ 3,

It then gets any output quantities of interest, in this case fairlead 3 and 4 tensions, and returns them

along with the net mooring force vector.
Ric, Lo HNE, COEGEIE7=TY—F3 & 4DRNZHT, EROHBETI~27 v
EREIC N D ZIRT,

function [FLines,Linel_Tens | = MoorDyn_caller(X,XD, Time,CoupTime)
FLines_value = zeros(1,6);

FLines = zeros(1,6);

Linel Tens = 0;

FLines_p = libpointer('doublePtr',FLines_value);
calllib('Lines','LinesCalc',X,XD,FLines_p,Time,CoupTime);

Linel Tens = calllib('Lines','GetFairTen',1);

FLines = FLines_p.value;

end

6.4. Using MoorDyn with WEC-Sim

6.4. Using MoorDyn with WEC-Sim

The coupling between MoorDyn and WEC-Sim is a recent development and examples of how to
use it should be sought from the WEC-Sim distribution7 for the time being.

MoorDyn & WEC-Sim D& IHEFDFETH Y | M 7EOHIL Y1 1E WEC-Sim AR & 11
%o

In general, the information about MoorDyn C contained in this document should apply for use with
WEC-Sim.

—IICiE, AXED MoorDyn C k2 WEC-Sim Tl & 15,

7. References & ik
(%)

R ver 1.0 SHFEE imaiy@cc.saga-u.ac.jp

